Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.419
Filtrar
1.
Biomed Microdevices ; 26(2): 21, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558326

RESUMO

Kirigami is one of the interesting paper art forms and the modified sub-class of origami. Kirigami paper art is widely employed in a variety of applications, and it is currently being used in biosensors because of its outstanding advantages. This is the first study on the use of a Kirigami-based aptasensor for DENV (Dengue virus)-antigen detection. In this study, the kirigami approach has been utilized to develop a stretchable, movable, and flexible sensor. The constructed stretchable-kirigami electrode helps in adjusting the connection of electrodes without disturbing the electrochemical cell zone during the experiment. To increase the sensitivity of this biosensor we have synthesized Ag-NPs (Silver nanoparticles) via chemical methods and characterized their results with the help of TEM & UV-Vis Spectroscopy. Different electrochemical approaches were used to validate the sensor response i.e., CV (Cyclic voltammetry) and LSV (Linear sweep voltammetry), which exhibited great detection capability towards dengue virus with the range of 0.1 µg/ml to 1000 µg/ml along with a detection limit of 0.1 µg/ml and showing no reactivity to the chikungunya virus antigen, making it more specific to the DENV antigen. Serum (healthy-human) was also successfully applied to validate the results of the constructed aptasensor. Integration of the Kirigami approach form with the electrochemical aptasensor that utilizes a 3-E setup (three-electrode setup) which is referred to as a tripod and collectively called Kirigami-tripod-based aptasensor. Thus, the developed integrated platform improves the sensors capabilities in terms of cost efficiency, high stretchability, and sensitivity.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Dengue , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Ouro/química , Prata/química , Técnicas Biossensoriais/métodos , Eletrodos , Dengue/diagnóstico , Limite de Detecção
2.
Biomed Phys Eng Express ; 10(3)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564254

RESUMO

The high demand for bone grafts has motivated the development of implants with excellent osteogenic activity, whereas the risk of implant-associated infection, particularly given the rise of antimicrobial resistance, has compelled the development of implants with innovative antimicrobial strategies in which a small amount of bactericidal agent can effectively kill a wide range of bacteria. To induce antibacterial property, the surface of Grade-5 bone plate titanium implants used in clinical applications was modified using direct current (DC) sputter coating followed by thermal annealing. The 15 nm silver film-coated implants were thermally annealed in the furnace for 15 min at 750 °C. The modified implant surface's antibacterial efficacy againstEscherichia coli(E. coli),Staphylococcus aureus(S. aureus),Salmonella typhi, andMethicillin-resistant staphylococcus aureusbacteria has been assessed using a colony-forming assay. On the modified implant surface, the growth ofE. coliandS. aureusbacteria is reduced by 99.72%, while highly drug-resistant bacteria are inhibited by 96.59%. The MTT assay was used to assess the cytotoxicity of the modified bone-implant surface against NIH3T3 mouse fibroblast cells. The modified bone-implant surface promoted fibroblast growth and demonstrated good cytocompatibility. Furthermore, the mechanical properties of the implant were not harmed by this novel surface modification method. This method is simple and provides new insight into surface modification of commercial metallic implants to have effective antibacterial properties against various classes of bacteria.


Assuntos
Ligas , Staphylococcus aureus Resistente à Meticilina , Prata , Animais , Camundongos , Titânio , Placas Ósseas , Escherichia coli , Células NIH 3T3 , Staphylococcus aureus , Antibacterianos/farmacologia
3.
Mol Biol Rep ; 51(1): 501, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598057

RESUMO

BACKGROUND: Dendrocalamus strictus (Roxb.) Nees, generally referred to as 'Male bamboo,' is a globally prevalent and highly significant species of bamboo. It is a versatile species and possesses notable industrial significance. However, despite its numerous applications, the production of this plant is insufficient to fulfill the worldwide demand. The challenges that impede the dissemination of D. strictus encompass the unpredictable blooming pattern (30-70 years), low seed production, and limited seed viability. Therefore, tissue culture presents a reliable and effective option for the mass production of standardized planting material. METHODOLOGY AND RESULTS: This study investigated the effects of silver nanoparticles (AgNPs) at a concentration of 6.0 mg L- 1 in the Murashige and Skoog (MS) nutrient medium fortified with pre-optimized plant growth regulators (3.0 mg L- 1 6-benzylaminopurine + 0.5 mg L- 1 α-naphthalene acetic acid) on the induction of flowering in a controlled environment in D. strictus. The use of AgNPs in the media induced a maximum of 14 inflorescences per culture vessel, 9 flowers per inflorescence, and improved the performance of the micropropagated plantlets during acclimatization in the greenhouse and field. The ISSR and SCoT amplified polymorphic DNA analysis of the regenerants resulted in the formation of 49 bands (300 to 2000 bp size) and 36 scorable bands (350 to 2000 bp) respectively. All the PCR amplicons produced by SCoT and ISSR were monomorphic confirming the genetic uniformity of the tissue cultured plants of D. strictus with the mother plant. CONCLUSIONS: It can be inferred that the incorporation of AgNPs during the shoot proliferation phase has the potential to stimulate in vitro flowering in D. strictus. This finding could provide valuable insights into innovative strategies for enhancing crop productivity and genetic manipulation for accelerated breeding and agricultural advancement.


Assuntos
Nanopartículas Metálicas , Prata/farmacologia , Melhoramento Vegetal , Biomarcadores , Aclimatação
4.
World J Microbiol Biotechnol ; 40(5): 158, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592601

RESUMO

Candida species is the causative agent in approximately 80% of invasive mycoses and drug-resistant Candida albicans is among the four strains of 'critical priority group' framed by WHO. Lichens are endowed with some rare phytochemicals and a plethora of therapeutics viz. antifungal capacities of Roccella montagnei. Biosynthesis of silver nanoparticles (AgNPs) using lichen could offer an eco-friendly, and cost-effective alternative against emerging 'microbial resistance.' Therefore, the objective was to biosynthesize silver nanoparticles (Rm-AgNPs) using a Hydro-alcoholic (1:1) extract of R. montagnei to develop a potent anticandidal agent against Fluconazole-resistant C. albicans NBC099. UV-Spectroscopy identified AgNPs specific-peak of Rm-AgNPs at 420-440 nm and FTIR revealed the presence of amines, alcohol, aromatic compounds, and acids. SEM and TEM analysis indicated that Rm-AgNPs are spherical shaped with a size range of 10-50 nm. Zetasizer analysis indicated that particles are highly stable and have a mean hydrodynamic diameter of 116 nm with a zeta potential charge of - 41 mV. XRD analysis suggested face centered cubic crystal lattice structure. Results indicated that Rm-AgNPs strongly inhibited the growth of NBC099 at a minimum inhibitory concentration (IC50) of ≤ 15 µg. C. albicans culture treated with Rm-AgNPs at concentrations below IC50, down-regulates the production of different virulence factors in NBC099, viz. hyphal formation (> 85%), biofilms production (> 80%), phospholipase, esterase, proteinase activity. The apoptosis assay demonstrated the Rm-AgNPs induced apoptosis in NBC099 cells via oxidative stress. Interestingly, Rm-AgNPs showed negligible cytotoxicity (< 6%) in murine RAW 246.7 macrophage cells at a concentration above 15 µg/mL. Therefore, Rm-AgNPs have been offered as an anti-candida alternative that can be utilized to improve the efficacy of already available medications.


Assuntos
Ascomicetos , Candida albicans , Nanopartículas Metálicas , Animais , Camundongos , Fluconazol/farmacologia , Prata/farmacologia , Candida
5.
Sci Rep ; 14(1): 8045, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580674

RESUMO

Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO2-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO2-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO2-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO2-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO2-AgNPs. In the treatment with 0.01% AgNPs and TiO2-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO2-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Prata/química , Fibra de Algodão , Ácido Succínico , Nanopartículas Metálicas/química , Têxteis , Antibacterianos/farmacologia , Antibacterianos/química
6.
Sci Rep ; 14(1): 8079, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582926

RESUMO

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Assuntos
Anti-Infecciosos , Citrus sinensis , Citrus , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Citrus/química , Escherichia coli/metabolismo , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Citrus sinensis/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
7.
Curr Microbiol ; 81(6): 149, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642138

RESUMO

In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.


Assuntos
Compostos Férricos , Nanopartículas Metálicas , Satureja , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Antifúngicos/farmacologia , Satureja/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Difração de Raios X , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia
8.
ACS Appl Bio Mater ; 7(4): 2254-2263, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568747

RESUMO

Diabetes is a major global health concern, with millions of annual deaths. Monitoring glucose levels is vital for clinical management, and urine samples offer a noninvasive alternative to blood samples. Optical techniques for urine glucose sensing have gained notable traction due to their cost-effectiveness and portability. Among these methods, surface-enhanced Raman spectroscopy (SERS) has attracted considerable attention thanks to its remarkable sensitivity and multiplexing capabilities. However, challenges remain in achieving reliable quantification through SERS. In this study, an alternative approach is proposed to enhance quantification involving the use of dual probes. Each probe is encoded with unique SERS signatures strategically positioned in the biologically silent region. One probe indicates the glucose presence, while the other acts as an internal reference for calibration. This setup enables ratiometric analysis of the SERS signal, directly correlating it with the glucose concentration. The fabrication of the sensor relies on the prefunctionalization of Fe sheets using an aryl diazonium salt bearing a -C≡CH group (internal reference), followed by the immobilization of Ag nanoparticles modified with an aryl diazonium salt bearing a -B(OH)2 group (for glucose capture). A secondary probe bearing a -B(OH)2 group on one side and a -C≡N group on the other side enables the ratiometric analysis by forming a sandwich-like structure in the presence of glucose (glucose indicator). Validation studies in aqueous solutions and artificial urine demonstrated the high spectral stability and the potential of this dual-probe nanosensor for sensitive glucose monitoring in clinical settings.


Assuntos
Glucose , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Automonitorização da Glicemia , Glicemia , Limite de Detecção , Prata/química
9.
ACS Appl Bio Mater ; 7(4): 2554-2568, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574371

RESUMO

Multidrug-resistant bacteria are a serious problem in biomedical applications that decrease the wound healing process and increase the mortality rate. Therefore, in this study, we have prepared a green-synthesized silver-nanoparticle-encapsulated mucilage microsphere (HMMS@GSNP) from Hibiscus rosa sinensis leaves and applied it to pathogen-infected burn and excision wounds. Biophysical properties like size, polydispersity index, absorbance capacity, and drug release were measured by different techniques like field-emission scanning electron microscopy, dynamic light scattering, swelling ratio, etc. The strong antibacterial activity of a HMMS@GSNP microsphere was measured by minimum inhibitory concentration assay, minimum bactericidal concentration assay, and agar well diffusion methods. The HMMS@GSNP microsphere enhanced the cell viability, cell proliferation, migration, antioxidant, and antiinflammation activity compared to untreated GSNP and HMMS, as quantified by MTT assay, BrdU assay, scratch wound assay, reactive oxygen species scavenging assay, and Western blot analysis, respectively. In the in vivo experiment, we used a methicillin-resistant Staphylococcus aureus bacteria-infected, burn-and-excision-wound-created male BALB/c mice model. The HMMS@GSNP-treated burn-and-excision-wound-infected mice showed significant results compared to other groups (untreated, Silverex Ionic Gel, AgNO3, HMMS, and GSNP), and the mice tissues were utilized for bacteria count, immunoblot analysis, histological studies, and real-time polymerase chain reaction. Thus, the HMM@GSNP microsphere is an excellent therapeutic material that can be used as a topical agent for the management of chronic wound therapy.


Assuntos
Queimaduras , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Masculino , Camundongos , Animais , Prata , Microesferas , Queimaduras/tratamento farmacológico
10.
Wei Sheng Yan Jiu ; 53(2): 294-299, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604967

RESUMO

OBJECTIVE: To establish an analytical method for determining the migration of 24 elements in Yixing clay pottery in 4% acetic acid simulated solution by inductively coupled plasma mass spectrometry. METHODS: Four types of Yixing clay pottery, including Yixing clay teapot, Yixing clay kettle, Yixing clay pot, and Yixing clay electric stew pot, were immersed in 4% acetic acid as a food simulant for testing. The migration amount of 24 elements in the migration solution was determined using inductively coupled plasma mass spectrometry. RESULTS: Lithium, magnesium, aluminum, iron, and barium elements with a mass concentration of 1000 µg/L; Lead, cadmium, total arsenic, chromium, nickel, copper, vanadium, manganese, antimony, tin, zinc, cobalt, molybdenum, silver, beryllium, thallium, titanium, and strontium elements within 100 µg/L there was a linear relationship within, the r value was between 0.998 739 and 0.999 989. Total mercury at 5.0 µg/L, there was a linear relationship within, the r value of 0.995 056. The detection limit of the elements measured by this method was between 0.5 and 45.0 µg/L, the recovery rate was 80.6%-108.9%, and the relative standard deviation was 1.0%-4.8%(n=6). A total of 32 samples of four types of Yixing clay pottery sold on the market, including teapots, boiling kettles, casseroles, and electric stewing pots, were tested. It was found that the migration of 16 elements, including beryllium, titanium, chromium, nickel, cobalt, zinc, silver, cadmium, antimony, total mercury, thallium, tin, copper, total arsenic, molybdenum, and lead, were lower than the quantitative limit. The element with the highest migration volume teapot was aluminum, magnesium, and barium; The kettle was aluminum and magnesium; Casserole was aluminum, magnesium, and lithium; The electric stew pot was aluminum. CONCLUSION: This method is easy to operate and has high accuracy, providing an effective and feasible detection method for the determination and evaluation of element migration in Yixing clay pottery.


Assuntos
Arsênio , Mercúrio , Oligoelementos , Cobre , Molibdênio/análise , Níquel , Argila , Magnésio , Alumínio/análise , Cádmio/análise , Bário/análise , Titânio/análise , Prata/análise , Berílio/análise , Estanho/análise , Arsênio/análise , Lítio/análise , Antimônio/análise , Tálio/análise , Zinco , Cromo , Cobalto/análise , Mercúrio/análise , Espectrometria de Massas , Acetatos , Oligoelementos/análise
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124178, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38565050

RESUMO

The development of a highly sensitive, synthetically simple and economical SERS substrate is technically very important. A fast, economical, sensitive and reproducible CuNPs@AgNPs@ Porous silicon Bragg reflector (PSB) SERS substrate was prepared by electrochemical etching and in situ reduction method. The developed CuNPs@AgNPs@PSB has a large specific surface area and abundant "hot spot" region, which makes the SERS performance excellent. Meanwhile, the successful synthesis of CuNPs@AgNPs can not only modulate the plasmon resonance properties of nanoparticles, but also effectively prolong the time stability of Cu nanoparticles. The basic performance of the substrate was evaluated using rhodamine 6G (R6G). (Detection limit reached 10-15 M, R2 = 0.9882, RSD = 5.3 %) The detection limit of Forchlorfenuron was 10 µg/L. The standard curve with a regression coefficient of 0.979 was established in the low concentration range of 10 µg/L -100 µg/L. This indicates that the prepared substrates can accomplish the detection of pesticide residues in the low concentration range. The prepared high-performance and high-sensitivity SERS substrate have a very promising application in detection technology.


Assuntos
Nanopartículas Metálicas , Compostos de Fenilureia , Piridinas , Rodaminas , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Prata/química
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124204, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569391

RESUMO

The rapid and accurate detection of drug molecules in pharmaceutical formulations and biological samples is of paramount importance. In this research article, we present a novel colorimetric sensor based on carbon dots decorated silver nanoparticles (CDs/AgNPs) for the rapid detection of ketotifen (KTF), a widely used antihistamine drug. The CDs were synthesized via a facile one-step microwave-assisted method and subsequently conjugated onto AgNPs through a simple adsorption process, forming a stable CDs/AgNPs composite. The resulting composite exhibited unique optical properties, including a strong absorption peak at 410 nm with remarkable intensity reduction and color changes upon the addition of KTF. The developed colorimetric sensor exhibited a wide linear range of 3.0-40.0 µg mL-1 (R2 = 0.9996), with a %RSD of 2.41, and a low limit of detection (LOD) of 0.981 µg mL-1. Furthermore, the sensor's practical applicability was evaluated by successfully detecting KTF in eye drops and artificial aqueous humor, demonstrating a remarkable percentage recovery exceeding 96.0 %. Finally, a comprehensive evaluation of the greenness and blueness of the method was performed using analytical eco-scale, GAPI, AGREEprep, and BAGI tools. The results of these assessments indicate its exceptional sustainability. Overall, the proposed method holds significant potential for applications in pharmaceutical quality control and therapeutic monitoring, contributing to improved patient care and drug safety in the field of ophthalmology.


Assuntos
Nanopartículas Metálicas , Humanos , Prata , Cetotifeno , Colorimetria/métodos , Carbono , Soluções Oftálmicas , Humor Aquoso
13.
Curr Microbiol ; 81(5): 135, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592462

RESUMO

Urinary tract infections are one of the most common infections worldwide. Given the increasing antibiotic resistance, monitoring antibiotic sensitivity patterns is crucial. Furthermore, silver nanoparticles synthesized from Stachys schtschegleevii can exhibit potent antibacterial, antibiotic, and antifungal properties. The plant S. schtschegleevii was collected from its natural habitat, dried, and its extract was then exposed to silver nitrate. Under specific conditions, silver nanoparticles were synthesized from it. Subsequently, the production and validation of silver nanoparticles were confirmed through techniques such as FTIR analysis, UV-Vis analysis, TEM, SEM, EDX analysis, and zeta potential analysis. In the in vitro section of the research, the impact of the extracted silver nanoparticles on bacteria isolated from patients' urine and standard bacterial culture (control) was assessed using the disc diffusion and MIC test methods. The results of the analyses are FTIR (high protein content; proteins and phenols serve as stabilizing agents), UV-Vis (peak of 460 nm), TEM (spherical to occasionally elliptical shapes), SEM (sizes: 26 to 72 nm), EDX (peak at 3 keV), and zeta potential (- 15.76 ± 0.05 mV). The effect of silver nanoparticles by disc diffusion method (mm) is Enterococcus faecalis = 18.31 ± 0.35, Escherichia coli = 21.51 ± 0.61, and Staphylococcus aureus = 19.02 ± 1.28, and by MIC test (µg/ml), E. faecalis = 19, E. coli = 18, and Staphylococcus aureus = 16. Antibacterial activity of the silver nanoparticles synthesized from S. schtschegleevii means that these herbal nanoparticles treat urinary tract infections caused by some of the test isolates.


Assuntos
Nanopartículas Metálicas , Stachys , Humanos , Escherichia coli , Prata/farmacologia , Antibacterianos/farmacologia , Bactérias , Extratos Vegetais/farmacologia
14.
Sci Rep ; 14(1): 7971, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575637

RESUMO

This study was divided into two parts. The first part involved the isolation, and detection of the prevalence and antimicrobial resistance profile of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio species from Nile tilapia fish and marine aquatic water. One hundred freshly dead Nile tilapia fish were collected from freshwater aquaculture fish farms located in Al-Abbassah district, Sharkia Governorate, and 100 samples of marine aquatic water were collected from fish farms in Port Said. The second part of the study focused on determining the in vitro inhibitory effect of dual-combination of AgNPs-H2O2 on bacterial growth and its down regulatory effect on crucial virulence factors using RT-PCR. The highest levels of A. hydrophila and P. aeruginosa were detected in 43%, and 34% of Nile tilapia fish samples, respectively. Meanwhile, the highest level of Vibrio species was found in 37% of marine water samples. Additionally, most of the isolated A. hydrophila, P. aeruginosa and Vibrio species exhibited a multi-drug resistance profile. The MIC and MBC results indicated a bactericidal effect of AgNPs-H2O2. Furthermore, a transcriptional modulation effect of AgNPs-H2O2 on the virulence-associated genes resulted in a significant down-regulation of aerA, exoU, and trh genes in A. hydrophila, P. aeruginosa, and Vibrio spp., respectively. The findings of this study suggest the effectiveness of AgNPs-H2O2 against drug resistant pathogens related to aquaculture.


Assuntos
Ciclídeos , Doenças dos Peixes , Nanopartículas Metálicas , Animais , Peróxido de Hidrogênio/farmacologia , Prata/farmacologia , Pesqueiros , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Água/farmacologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Aeromonas hydrophila
15.
Med Oncol ; 41(5): 106, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575697

RESUMO

Recent advances in nanotechnology have offered novel ways to combat cancer. By utilizing the reducing capabilities of Lactobacillus acidophilus, silver nanoparticles (AgNPs) are synthesized. The anti-cancer properties of AgNPs have been demonstrated in previous studies against several cancer cell lines; it has been hypothesized that these compounds might inhibit AMPK/mTOR signalling and BCL-2 expression. Consequently, the current research used both in vitro and in silico approaches to study whether Lactobacillus acidophilus AgNPs could inhibit cell proliferation autophagy and promote apoptosis in HepG2 cells. The isolated strain was identified as Lactobacillus acidophilus strain RBIM based on 16 s rRNA gene analysis. Based on our research findings, it has been observed that this particular strain can generate increased quantities of AgNPs when subjected to optimal growing conditions. The presence of silanols, carboxylates, phosphonates, and siloxanes on the surface of AgNPs was confirmed using FTIR analysis. AgNPs were configured using UV-visible spectroscopy at 425 nm. In contrast, it was observed that apoptotic cells exhibited orange-coloured bodies due to cellular shrinkage and blebbing initiated by AgNP treatment, compared to non-apoptotic cells. It is worth mentioning that AgNPs exhibited remarkable selectivity in inducing cell death, specifically in HepG2 cells, unlike normal WI-38 cells. The half-maximum inhibitory concentration (IC50) values for HepG2 and WI-38 cells were 4.217 µg/ml and 154.1 µg/ml, respectively. AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells. AgNPs co-treatment led to higher glutathione levels and activating pro-autophagic genes such as AMPK.Additionally, it resulted in the suppression of mTOR, MMP-9, BCL-2, and α-SMA gene expression. The docking experiments suggest that the binding of AgNPs to the active site of the AMPK enzyme leads to inhibiting its activity. The inhibition of AMPK ultimately results in the suppression of the mechanistic mTOR and triggers apoptosis in HepG2 cells. In conclusion, the results of our study indicate that the utilization of AgNPs may represent a viable strategy for the eradication of liver cancerous cells through the activation of apoptosis and the enhancement of immune system reactions.


Assuntos
Neoplasias Hepáticas , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Prata/química , Proteínas Quinases Ativadas por AMP , Nanopartículas Metálicas/química , Metaloproteinase 9 da Matriz , Apoptose , Neoplasias Hepáticas/tratamento farmacológico , Serina-Treonina Quinases TOR , Proteínas Proto-Oncogênicas c-bcl-2 , Extratos Vegetais/química
16.
J Diabetes Res ; 2024: 4873544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577302

RESUMO

The production of nanoparticles enhances the bioactivity of biological molecules for drug delivery to diseased sites. This study explains how silver nanoparticle (AgNP) coating enhanced the protection effects of vanillic acid in male diabetic rats with streptozotocin- (STZ-) induced diabetes. Twenty-four rats were divided into four groups (n = 6) for this investigation. The first group (G1) is untreated, whereas diabetes was induced in the other three groups through STZ injection. Diabetic rats that were not getting therapy were included in the second group (G2, STZ-positive), whereas the other diabetic rats were divided into the third group (G3, vanillic acid-treated) and the fourth group (G4, vanillic acid-coated AgNPs treated). The treatment lasted four weeks. In G2, the induction of diabetes significantly (at P = 0.05) increased in serum glucose, glycated proteins, renal indices, interleukin-6 (IL-6), K+, immunoglobulins, and lipid peroxidation, while decreased Ca++, Na+, and other antioxidants in the kidney tissue homogenate. In addition, pathological altered signs were present in the pancreas and kidneys of diabetic rats. The renal and pancreatic tissues were effectively enhanced by vanillic acid or vanillic acid-coated AgNPs, bringing them very close to their prediabetic conditions. Vanillic acid-coated AgNPs offered a stronger defense against STZ-induced diabetes and lessened the effects of hyperglycemia compared to ordinary vanillic acid. Additionally, using vanillic acid coated with silver nanoparticles greatly increased the antioxidant and antidiabetic activity and reduced inflammation when compared to using vanillic acid alone.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas Metálicas , Ratos , Masculino , Animais , Estreptozocina/farmacologia , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Prata/farmacologia , Prata/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Antioxidantes/uso terapêutico , Estresse Oxidativo
17.
Mikrochim Acta ; 191(5): 244, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578321

RESUMO

The sensing sensitivity was improved for silver nanoparticles (AgNPs)-based colorimetric biosensors by using the most suitable salt to induce AgNPs aggregation. As for the salt composed of low-affinity anion and monovalent cation, the cation-dependent charge screening effect was the driving force for AgNPs aggregation. Apart from the charge screening effect, both the bridging of multivalent cation to the surface ligand of AgNP and the interaction between anion and Ag contributed to inducing AgNPs aggregation. Considering the higher aggregation efficiency of AgNPs resulted in a narrower sensing range, salt composed of low-affinity anion and monovalent cation was recommended for AgNPs-based colorimetric analysis, which was confirmed by fourfold higher sensitivity of DNA-21 detection using NaF than NaCl. This work inspires further thinking on improving the sensing performance of metal nanomaterials-based sensors from the point of colloidal surface science.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Cloreto de Sódio , Prata , Colorimetria/métodos , Ânions , Cátions Monovalentes
18.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652326

RESUMO

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Assuntos
Cobalto , Colorimetria , Glutationa Transferase , Compostos de Manganês , Nanopartículas Metálicas , Óxidos , Polietilenoimina , Prata , Polietilenoimina/química , Prata/química , Cobalto/química , Óxidos/química , Compostos de Manganês/química , Nanopartículas Metálicas/química , Colorimetria/métodos , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Limite de Detecção , Oxirredutases/química , Oxirredutases/metabolismo , Humanos , Glutationa/química , Oxirredução , Técnicas Biossensoriais/métodos , Fenilenodiaminas/química , Nanoestruturas/química
19.
Mikrochim Acta ; 191(5): 286, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652378

RESUMO

A perennial challenge in harnessing the rich biological activity of medicinal and edible plants is the accurate identification and sensitive detection of their active compounds. In this study, an innovative, ultra-sensitive detection platform for plant chemical profiling is created using surface-enhanced Raman spectroscopy (SERS) technology. The platform uses silver nanoparticles as the enhancing substrate, excess sodium borohydride prevents substrate oxidation, and methanol enables the tested molecules to be better adsorbed onto the silver nanoparticles. Subsequently, nanoparticle aggregation to form stable "hot spots" is induced by Ca2+, and the Raman signal of the target molecule is strongly enhanced. At the same time, deuterated methanol was used as the internal standard for quantitative determination. The method has excellent reproducibility, RSD ≤ 1.79%, and the enhancement factor of this method for the detection of active ingredients in the medicinal plant Coptis chinensis was 1.24 × 109, with detection limits as low as 3 fM. The platform successfully compared the alkaloid distribution in different parts of Coptis chinensis: root > leaf > stem, and the difference in content between different batches of Coptis chinensis decoction was successfully evaluated. The analytical technology adopted by the platform can speed up the determination of Coptis chinensis and reduce the cost of analysis, not only making better use of these valuable resources but also promoting development and innovation in the food and pharmaceutical industries. This study provides a new method for the development, evaluation, and comprehensive utilization of both medicinal and edible plants. It is expected that this method will be extended to the modern rapid detection of other medicinal and edible plants and will provide technical support for the vigorous development of the medicinal and edible plants industry.


Assuntos
Nanopartículas Metálicas , Plantas Comestíveis , Plantas Medicinais , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Plantas Medicinais/química , Prata/química , Plantas Comestíveis/química , Limite de Detecção , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Reprodutibilidade dos Testes , Alcaloides/análise
20.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611727

RESUMO

The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.


Assuntos
Anti-Infecciosos , Nanopartículas , Prata/farmacologia , Gossypium , Têxteis , Anti-Infecciosos/farmacologia , Escherichia coli , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...